디지털 신호처리.hwp |
본문 이번 프로젝트는 입력이 non-causal unit step function 일 때, 출력이 causal하고 stable한 IIR 시스템을 설계하는 것이다. 또 한 이 시스템의 임펄스함수와 pole-zero plot의 위치를 분석하고 time-domain과 frequency-domain 에서 시스템이 안정적일 조건을 분석하는 것이다. 2. convolution 간단히 convolution의 의미에 대해 말하자면 시스템에 메모리가 있는 경우 한 시스템의 출력이 현재 입력에 의해서만 결정되는 것이 아닌 이전 입력 (causal system 이라면)에 의해서도 영향을 받기 때문에 그에 대 한 출력을 나타내기 위해 하는 연산이다. 예를 들어 종을 LTI(Linear Time Invariant) 시스템 이라 가정한다면 종을 한번 치면 그 소리가 치는 순간만 나는 게 아니라 치는 순간에 소리가 크게 났다가 점점 소리가 감쇠되며 작아진다. 그림1. 종을 한번 쳤을 때 그림1 의 경우와 같다. 종을 한번 탕 치는 것을 impulse입력이라 하고 한번 종을 쳤을 때 나는 소리를 삼각형으로 나타냈다. 종을 한번 치고 다시 치면 어떨까 ? 그림 2. 종을 한번 치고 다시 쳤을 때 그림 2의 경우는 종을 치고 잠시 후 이전보다 약하게 친 경우이다. 이 때 종소리를 Linear system으로 가정했기 때문에 이전에 입력에 의해 나고 있는 소리에 현재 입력에 의해 나는 소리가 더해져 나타난다. 그리고 이것은 impulse 입력과 종소리의 covolution과 같은 결과가 나올 것이다. 따라서 convolution은 한 LTI 시스템에 대해 현재와 이전의 입력에 대한 출력을 계산하기 위해 수행하는 것이다. 하고 싶은 말 좀 더 업그레이드하여 자료를 보완하여, 과제물을 꼼꼼하게 정성을 들어 작성했습니다. 위 자료 요약정리 잘되어 있으니 잘 참고하시어 학업에 나날이 발전이 있기를 기원합니다 ^^ 구입자 분의 앞날에 항상 무궁한 발전과 행복과 행운이 깃들기를 홧팅 키워드 신호처리, 디지털, 처리 |
2018년 6월 13일 수요일
디지털 신호처리
디지털 신호처리
피드 구독하기:
댓글 (Atom)
댓글 없음:
댓글 쓰기